Coarse topological transitivity on open cones and coarsely J -class and D -class operators
نویسندگان
چکیده
منابع مشابه
J-class Operators and Hypercyclicity
The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a “localization” of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a positive integer n such tha...
متن کاملA class of J-quasipolar rings
In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...
متن کاملTopological Transitivity and Strong Transitivity
We discuss the relation between (topological) transitivity and strong transitivity of dynamical systems. We show that a transitive and open self-map of a compact metric space satisfying a certain expanding condition is strongly transitive. We also prove a couple of results for interval maps; for example it is shown that a transitive piecewise monotone interval map is strongly transitive.
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملTopological Conjugacy and Transitivity for a Class of Piecewise Monotone Maps of the Interval
We say that a continuous map / of a compact interval to itself is linear Markov if it is piecewise linear, and the set of all fk(x), where k > 0 and x is an endpoint of a linear piece, is finite. We provide an effective classification, up to topological conjugacy, for linear Markov maps and an effective procedure for determining whether such a map is transitive. We also consider expanding Marko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.12.038